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SUBSPACES WITHOUT
THE APPROXIMATION PROPERTY

BY
A. SZANKOWSKI

ABSTRACT

It is proved that the Banach space I, with 1 = p < 2 contains a subspace without
AP (the case 2 < p = follows from the Enflo’s construction and also from the
present one). The resuit generalizes to the following one: if the supremum of
types of X is strictly less than 2 or if the infimum of cotypes of X is strictly more
than 2 then X contains a subspace without AP.

A Banach space Z has the compact approximation property (CAP) if for every
compact K CZ and for every £ >0 there exists a compact operator T: Z—> Z
such that ||Tz — z||< ¢ for every z €K.

Clearly, CAP is a (formally) weaker property than the Grothendieck’s
approximation property (it is, however, not known if the two properties are
different).

The following criterion for a Banach space not to have CAP is a modification
of Enflo’s original one [1].

Throughout this paper we shall denote I, ={2" +1,2" +2 ... 2"},

PROPOSITION. A Banach space Z does not have CAP if there exist bounded
sequences z 1 € Z*, z, € Z and finite subsets F, CZ, n=1,2,--- so that
0° z%z, =1 for all n,

* v
1° z¥—0,

2° forevery T: Z— Z,

27" 23Tz 27" > z*%Tz| =max{|Tf|: f € F.},

i€l, i€l

¥ ¥ max{|f]:f€F}<e.
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Proor. Weput B,(T)=2"Zic,z Tz and a, = max{||f|: f € F.}. By 2° and
3%, |Bu(T) = Basi(T)|Z| T|l@. and therefore B.(T) is convergent if T is
bounded. We put B(T)=1lmpB,(T) for TEL(Z,Z) (=bounded linear
operators). By 0°, B(I) = 1 where I is the identity on Z. Next we shall notice that
B annihilates the compact operators: if T is compact, then the set (Tz)i-, is
compact, therefore, since 2*20 and z* is bounded, lim, sup, |z4Tz|=0, in
particular z 3Tz, — 0 and B.(T)— 0.

Pick now &, n=1,2,--- so that £ — ® but Sa.£, <. Let us take

K = U (6.)'F, U0}

K is just a sequence tending to 0 and is therefore compact.
We have, by 2° and 3°, for TE L(Z, Z),

B(T)= (2 auta)supllfI: f€K7,
Assume now that T is compact and that || Tx — x || < ¢ for all x € K. By linearity
of B,
1=18U-T)|= (T ats) e

which forces ¢ to be bounded away from 0.

1. A subspace of /,, 1 = p <2, without AP

Let A, be a (disjoint) partition of I,, to be defined later on.
Let Y = (S.Zaca. P 12),, i.e. Y is the space of all sequences t = ()~ such
that

1/p

1=(2 2 (24)") <=

equipped with the norm | |.

Clearly, Y is isomorphic to a subspace of /,, 1 = p == (Y is even isomorphic
to I, for 1 < p < ). Let (e;) be the unit vector basis of Y (i.e. & = (8,);-1) and let
(e?) be the biorthonormal functionals of e;; we have

SEEED)T G

Now define z; = €y — €211+ €4 + €4iv1 + €452+ €403 and Z = span[z; )., C Y. We
will prove that for a suitable choice of the partitions A,, Z fails to have CAP.

uz e’
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Notice that (e%, —e%..1)z=3el + -+ el..s);z because both sides give 2
when evaluated on z; and give 0 when evaluated on z;, j# i. We define z% € Z*
by

z%= %(e 3 e§i+1)|z ( = %(e e+ etwa)jz)-

We put for TE€ L(Z, Z),

B.(T)=2"2 z*Tz.

i€l,

We have

i€l

Bart(T) = Ba(T)=27""2 (€%, — e3:)T(es — €r01+ € + -+ * + €4513)

-2 z (e et e:i+3)T(e2i —exuteyut -+ e4i+3)

i€l

which is equal to

22 Z {e :ET(eM —Csntes v tegaa—eytey—€e4— 84.~+3)
i€,

+ et.‘uT(_ €si t €aiv1— €~ —Cgiiz— €5t € — €4 — 0 — e4i+3)

teti2T(esiz—€qivstesiat - tegr—€n+eng—es—--— €4i+3)

te :i+3T(— Chivat €uivz—€giua— " —€giur— €y T 21— €4 — " — e4i+3)}-

The elements in parentheses above will be called yui, Yiisi, Yaiva, Yairs respec-
tively, thus

BarlT) = BulT)=2"" 3, e*Ty.

i€l

Now we use a trick which has been already used in [6]. Let V. be a partition of I,
(V. will be in a sense ‘‘orthogonal” to A,). We assume, for the sake of
convenience, that the elements of V. have equal number of elements, say m,.
Thus # V, =2"m;".

We can write

Be(T)=Bui(T)=2"" Y et Ty =2"" 3 > et Ty,

i€l BEV, i€B

DD (2 e.-e’,f) (2 s.-Ty,-)

BeV, € i€B i€EB
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where Z, means: summation with respect to all &, = =1, i € B.
Since 2 & Ty, = T Z &y, we get

[ B (T)~ Bu-1(T)]
(M
=277 H V,.)max{

2 ce’

i€eB

T 2 EYi

i€EB

tE = tl,BEV,.}.

In the last part of the proof we shall find partitions A,, V. so that for every
B €V, and every choice of & = =1 and all n we have

1.1
2 eet|=my?  where —+==1,
@ 2 >t
3 2, eyl = 10m e
i€B
@) m, 2",

Let us first notice that this implies that Z fails to have CAP:
Take F, ={m /" 'Zicpeyi: & = *1,B€V,}; by (1) and (2),

|Bx(T) = Bu-o(T)| = smax{| Tf||: f € F.}
and, by (3) and (4),
a, = max{|f|: fE€E F.} = 10m Y+ < C2%"

for some K <0. Therefore the assumptions of the Proposition are satisfied.
We proceed now to construct the partitions A, and V,.
We denote I, ={i € I,: i =r(mod4)} for r =0,1,2,3. The formula ¢ (i) =
i+r defines a map ¢,: In—> I, r=0,1,2,3. For a =0,1 we define maps
Yna: 15— I3, by formulas

Yna(i)=2i + 4a.

All the above maps are 1-1 and have disjoint ranges.
We can represent I, as I3= E, X F, so that

o) #E, z2"*1 # F, 220/

and so that the following recurrence relations are satisfied for a =0, 1:

VfEF,3eE€E,. so that ¢,.(E,x{f})C{e}xF,.,

(6 .
) VfEF,3e€&€E,, sothat E,Xx{f}C L_J Yn-1.({e} X F,._y)
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(we can do it by an easy induction: on the n + 1st step we take either

E,..= U Yna (Fo) and F,., = Yo(E,) or E,..;= ¢,0(E,) and

F...= U Yno (Ex), making the choice so that (5) is still fulfilled).

Finally, we split each E,, quite independently of what has been done until
now, as

:u

ER)

E.=[]E, ie. E.=E°xE.xEXxE?

[

demanding just that # E; =2""*"for r=0,1,2,3.

We set now'

= {qo:.(E;x{f}):fe ];IE:XF,,; r =0,1,2,3}

and

A, = {¢;({e}x I1E;x F"):e € E;; r=0,1,2,3} )

s#r

The condition (4) is obviously satisfied (for big n), to prove (2) and (3) let
BEV,, B=g¢LE.x{f}) with f=]]f. xf, fEF.
sHEr

(2) is almost immediate. We claim that for every A €A, #ANB=1.
Indeed, let

A= (pﬁ.({e}xl—[ E; X F,.).

s#£1

If t#7r, then A N B =J. Otherwise A N B ={p.(e X f)}. Now we have

S et

i€B

(Z (+A ﬂB)")”q=(#{A €A, ANB#EZ"

AEA,

=(#B)""=ml"

The proof of (3) is a bit more involved. A look at the formula for y; convinces us
that for every &

" We use the convention A X B = B X A.
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Sey=-Sa 3 ]eaes+(—1)i

Ei i
i€en s#r  iCeAlEAxif) 5=0i€ prsrdnalEn X {fi]

- E ge + z Ei€i;

PE ph 1 LylEL x{f}] i€ o8t lyn Ly[ELx{f}]

)

here a, are respectively 1 or 2, a, 8, y are 0, 1 or 2. The point is now that, by (6),
all the index sets above are contained in some elements of A,_;, A, A..1,
respectively. The following is a formal proof:

1° for s#r, E,X{f} =f XDuyiufs X f'Cf, XL, ,E » X F, and therefore

eH(ELx e (hIx ] B X F) €

2° by (6), @ nr1na (E," X {f})C(p;Hl[In,a (E,, X {f})qu:H({e}X Fn+1) for some
e =1I2_,e, with e, € E:.,. Therefore

QP:H({e}XFnﬂ)cﬁor'.ﬂ({es}an;HxF,,)EA,;H for s =0,1,2,3.
1#s

3% by (6), eha i AELX{f})Ceh 1l (E. x{f}) Cohi-i({e} x F.-y) for
some e = [[l_,e. with e, € E:_,. Therefore

0P({e} X Fu) c«»ﬁﬂ({eﬁ.} x [] B Fii) €8,
sH#EB

This tedious argument shows that we can rewrite (7) as

10

S ey=3x e

iEB j=1 €A
where A, -, A are subsets of some elements of A,_,, A,, A,.,, respectively
and, in fact, #A;= #B for j=1,---,10 (the number 10 arises since

Soea, =2+1+1=4, 2}, gives 4 more elements and two last components give
each 1). Therefore

S e

€Ay

:(#A;’)”2= (# B)l/2= m:.ll

and, finally,

" 2 " <10m'”2,
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2. The generalisation

For an infinite dimensional Banach space X let p(X)=sup{p: X has type p}
and q(X)=inf{g: X has cotype q}. The results of Maurey and Pisier [5]
combined with the work of Krivine (4] yield the following important result: For
every X, L and lx, are finitely representable in X.

On the other hand, it has been observed by Figiel [2] that if I, has a subspace
without AP and l, is finitely representable in X then X has a subspace without AP.
(This can be also easily seen from our construction, actually we have used there
only the fact that Y =2, Caca,P!7), where 2,8 is any direct sum
decompostion.)

Although we have not considered the case p > 2, it should be clear that the
whole construction carries to this case as well, we just have to interchange the
roles of A, and V.. As said before, the case p > 2 follows anyhow from Enflo’s
construction, as shown by Davie, Figiel and Kwapien.

In this way we obtain the result stated in the Abstract: if p(X) <2 or q(X)>2
then X contains a subspace without AP.

The limit case p(X)= q(X)=2 has been recently settled by W. B. Johnson
[3]- He proved that if p, »2 and K, — « very fast, then every subspace of
P i5), has AP.
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