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SUBSPACES WITHOUT 
THE APPROXIMATION PROPERTY 

BY 

A. S Z A N K O W S K I  

ABSTRACT 

It is proved that the  Banach space lp with 1 <_- p < 2 contains a subspace without 
A P  (the case 2 < p _--< ~ follows from the Enflo's  construction and also from the 
present  one). The  result generalizes to the following one:  if the  s u p r e m u m  of 
types of X is strictly less than 2 or if the  inf imum of cotypes of X is strictly more  
than 2 then X contains a subspace without AP. 

A Banach  space Z has the compact approximation property ( C A P )  if for every 

compac t  K C Z  and for every e > 0 there  exists a compac t  ope ra to r  T:  Z ~ Z 

such that I[ Tz - z tl < e for  every z ~ K. 

Clearly, C A P  is a (formally) weaker  proper ty  than the Gro thend ieck ' s  

approximat ion  proper ty  (it is, however ,  not  known if the  two proper t ies  are 

different). 

The  following cri terion for a Banach space not  to have C A P  is a modificat ion 

of  Enf lo ' s  original one  [1]. 

T h r o u g h o u t  this paper  we shall deno te  I ,  = {2" + 1, 2" + 2 ,. - . ,  2"+t}. 

PROPOSmON. A Banach  space Z does not have C A P  if there exist bounded 

sequences z * E Z * ,  z .  ~ Z and  finite subsets F.  C Z ,  n = 1, 2 ,. �9 �9 so that 
0 o * z . z .  = 1 for all n, 

w ~ 
1 ~ z*~ O, 

2 ~ for every T: Z ~ Z ,  

12-~ , ~  z * Tz' - 2-~-I i~,~+~ z * Tz' l <= max {lI T f  H: f ~ F" }' 

3 ~ ~ m a x { t l f [ l : f e F ~ } < ~ .  
n = l  
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PROOF. W e  put  f t . ( T )  = 2 - "X,~ , . z*Tz ,  and  a .  = max{llfll: f E F J .  By 2 ~ and  

3 ~ I/3.(T)-~.+~(T)I<=IITIla. and the re fo re  ft.(T) is convergen t  if T is 

bounded .  W e  put  f l (T)=lim/3.(T) for  T E L ( Z , Z )  ( = b o u n d e d  l inear  

opera tors ) .  By  0 ~ = 1 where  I is the  ident i ty  on Z. Next  we shall not ice  that  

/3 annihi la tes  the compac t  opera to rs :  if T is compac t ,  then  the  set  (Tz,)~%t is 
, w *  

compac t ,  there fore ,  since z .  ~ 0 and z * is bounded ,  l im.  sup~ I z * Tz~ I = 0, in 

par t icular  z*Tz.---~0 a n d / 3 . ( T ) - - ~ 0 .  

Pick now ~ ,  n = 1, 2 ,. �9 �9 so that  ~ --~ oo but  X a . ~  < oo. Let  us t ake  

K = 0 (~.a.)- 'F. O{0}. 
n = l  

K is just a sequence tending to 0 and is therefore compact. 

We have, by 2 ~ and 3 ~ for TEL(Z,Z), 

/3(r)--< II: r 

A s s u m e  now that  T is c o m p a c t  and  that  II Tx - x II < E for  all x E K. By l ineari ty 

of /3, 

1 =  ] / 3 ( I -  T)l <- ( ~  a.~.) " E 

which forces  e to  be  b o u n d e d  away  f rom O. 

1. A subspace of lp, 1 _-< p < 2, without AP 

Let  A, be  a (disjoint)  par t i t ion  of I,, to be  def ined la ter  on. 

Le t  Y = (X,EA~a .@ l~)z~, i.e. Y is the  space  of all sequences  t = (t~),%~ such 

that  

x lip 

equ ipped  with the  n o r m  t] tl. 

Clearly,  Y is i somorph ic  to a subspace  of lp, 1 -< p =< o0 ( y  is even i somorph ic  

to l~ for  1 < p < co). Le t  (e,) be  the  unit  vec tor  basis  of  Y (i.e. e, = (&J)7-0 and let 

(e*)  be  the  b i o r t h o n o r m a l  funct ionals  of  e~; we have  

1 + ! = 1 ) .  
P 

N o w  define z~ = e~ - e~,+l + e4i + e,~§ + e,~+2 + e4i+3 and Z = span [z~]7~1C Y. We  

will p r o v e  tha t  for  a sui table  choice  of  the  par t i t ions  A,, Z fails to have  C A P .  
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e *  - l e  * Not i ce  tha t  ( e * , -  2 ,+ l ) l z -= (  *, + " "  + e4 i+3) l z  b e c a u s e  bo th  s ides  g ive  2 

when  e v a l u a t e d  on z~ and  g ive  0 when  e v a l u a t e d  on zj, j ~  i. W e  def ine  z * E Z *  

by  

z *  1 , e *  - e *  , = ~ ( e z , -  2 , + , ) i z ( - � 8 8  4,+3)1z). 

W e  pu t  for  T ~ L ( Z , Z ) ,  

W e  have  

/3 . (T)  = 2-" ~'~ z*Tz,. 

~ . + , ( T ) -  f t . ( T )  = 2 -" -2  ~'~ ( e * ,  - e* ,+ l )T(e2 i  "e2 ,+ i  + e,i + " "  + e4,+, )  
rein 

- 2 -"-2 Y. (e,*, + . . -  + e L+3)T(e2, - e2,+, + e,, + . . .  + e,,+3) 
iEln--I 

which is equa l  to  

2 -" -2  ~ { e ' i T ( e , ,  - e , , + ,  + e~, + . . .  + e 8 , + ~ -  e=, + e=,+, - e4, . . . . .  e , ,+3)  
i E l n - 1  

+ eL~-1T(- e4i + e , , + , -  es, . . . . .  es ,+3-  e=, + e2 ,+ , -  e., . . . . .  e4,+,) 

+ e *,+2T(eg,+2- ea~+3 + es,+, + " �9 + e8 ,+ , -  e2, + e2~+1 - e,, . . . . .  e4i+3) 

+ e *,+3T( - e,,.= + e4,+3 - e8,+4 . . . . .  e8,+7 - e=, + e2,+1 - e4, . . . . .  e,,+3)}. 

T h e  e l e m e n t s  in p a r e n t h e s e s  a b o v e  will be  ca l led  y4,, y4~+1, y4,+2, y4i+3 respec-  

t ively,  thus  

/ 3 . + l ( T ) - / 3 . ( T ) = 2  -"-= ~'~ e*Ty,. 
i E / n §  

N o w  we use a t r ick  which has  been  a l r eady  used  in [6]. Le t  V. be  a pa r t i t i on  of I .  

(V. will  be  in a sense  " o r t h o g o n a l "  to  A. ) .  W e  assume,  for  the  sake  of  

conven ience ,  that  the  e l e m e n t s  of  V. have  equa l  n u m b e r  of  e l emen t s ,  say m..  

Thus  41: V. = 2"m :1. 

W e  can wr i te  

tS , , (T) -~ ._ l (T)=2-" - t  ~ , e * T y , = 2 - " - l  ~, ~, e*Ty, 
i ~ l n  B E V  n [ E B  

= 2  Z 2 Z e,e* e, Ty, 
BEVn 
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where  E~ means:  summat ion  with respect  to all ei = _ 1, i E B. 

Since EeiTy~ = T E e f f ,  we get 

I ft. ( T ) -  f l . -~(T)/  
(1) 

i E I N  

In the last part  of  the p roof  we shall find part i t ions &., V. so that  for  every 

B E V. and  every  choice of  e~ = +_ 1 and all n we have 

,e.lt w.ere '+ !  1 i = m " ,  p q 

n 

(4) m. --< 2 "/1~176 

Let  us first notice that  this implies that Z fails to have C A P :  
Take  F.  = 1/q-i {m.  X,~e ,y ,  : e, = --+ 1, B E V.}; by (1) and (2), 

If l .(T) -/3,_,(T)J =< �88 [ Tfl[: f ~ F,,} 

and, by (3) and (4), 

a .  = max {Ill[l: f ~ F.} =< lOm ~/~-1+~/2 < C2~.  

for  some  K < 0. There fo re  the assumptions  of  the Propos i t ion  are satisfied. 

We  p roceed  now to construct  the part i t ions A. and V.. 

We  deno te  1.' = {i E I . :  i - - - r  (mod4)} for  r = 0, 1 ,2 ,3 .  The  formula  q~.'(i) = 

i + r defines a map  ~0.': I~ r = 0 ,1 ,2 ,3 .  For  a = 0,1 we define maps  

~b... : I~ 1~247 by formulas  

~b.,,,(i) = 2i + 4a. 

All the above  maps  are 1-1 and have disjoint ranges. 

We  can represent  I~ as I .  ~ = E .  x F .  so that  

(5) # E .  > 2 "/2-1~ 4~ F.  > 2 "/2-1~ 

and so that  the following recurrence  relat ions are  satisfied for  a = 0, 1: 

V f E F .  3 e ~ E . + ,  so that  ~0 . ,~ (E .x{ f} )C{e}xF .+ l  

(6) 
V f E F .  3 e ~ E . _ I  so that E . x { f } C  6 r  

a = o  
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(we can do it by an easy induction: on the n + 1st step we take either 

E.+~ = 0 ~b..~ (F.)  and F.+, = ~b.,o(E.) or E.+I = ~b.,o(E.) and 
a = o  

F.+I = 0 ~,~. (E.) ,  making the choice so that (5) is still fulfilled). 
a = 0  

Finally, we split each E., quite independently of what has been done until 

now, as 

3 

E.=I'-[E'~ i . e . E . = E ~ 2 1 5 2 1 5 2 1 5  
r=O 

demanding just that # E~ => 2 ~8-~~ for r = 0, 1, 2, 3. 

We set nowt 

and 

f r z r r  X ~ } V . = l ~ o . t t ~ .  { / } ) : f e ~ E ' . •  r = 0 , 1 , 2 , 3  

The condition (4) is obviously satisfied (for big n), to prove (2) and (3) let 

B e V . ,  B=~o' .(E:•  with f = y I h •  f'eF.. 
s / r  

(2) is almost immediate. We claim that for every A E A,, # A n B =< 1. 

Indeed, let 

A = q~'.({e} x l-I E~.x F.). 
s ~ t  

If t #  r, then A n B = 0 .  Otherwise A A B  = {q~(e x f)}. Now we have 

e,e* = A O B y  = ( # { A e A , : A O B # ~ Z ~ } ) ' "  
i Y *  

(# B) .. = 1/q= m ,  . 

The proof of (3) is a bit more involved. A look at the formula for y, convinces us 

that for every el 

* We use the convention A x B = B xA. 
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(7) 

X ~,y, = - X a ,  E, e,e, + ( -  1 ) ~  X , e,e, 
i ~ B  s # r  i ~ @ , ~ [ E ,  x,'d/I s ~ o  i ~ @ ~ l ~ . . . [ E n  • {/1] 

- X e,e, + X e,e, ; 
~E, . - I r  Io,{E. x{/} l I E , . - 1 * .  I,~'[E. • 

here a, are respectively 1 or 2, a,/3, T are 0, 1 or 2. The point is now that, by (6), 

all the index sets above are contained in some elements of A._~, A., A.+t, 

respectively. The following is a formal proof: 

1 ~ for s # r ,  E'.  x { f } = f ,  x H,,,..,.,fi x f ' C f ,  xII , , , ,E' ,  x F .  and therefore 

t.~s 

2 ~ by (6), ~p~+~f..a(E" • {f})Cq~+tf..~(E. x {/})Ccp~+~({e}x F.+ 0 for some 

e = II~=0e, with e, E E~.I.  Therefore 

~,L,({e}xF.+,)C~:+,({e.}• for s =0,  I,2,3. 

3 ~ by (6), q~.-l$.-~,,(E.~ -1 ' • {f})C~._I$,_I.,(E.~ - '  x {[})C~0.~_l({e}x F,_ 0 for 

some e = H3=oe, with e, E E'._~. Therefore 

q~.~_l({e} x F,- ,)  Cr • H E ~ - l x  F.- l )  E A.-I. 
s#,e 

This tedious argument shows that we can rewrite (7) as 

1o 

X ~,y, = E -  + X~,e,  
I U B  j=l  l E A  1 

where A 1 , ' " ,  A~o are subsets of some elements of A._~, A., A.+~, respectively 

and, in fact, # A j  = # B  for j = 1 , . . . , 10  (the number 10 arises since 

E,,,,a, = 2 + 1 + 1 = 4, E~=o gives 4 more elements and two last components give 

each 1). Therefore 

and, finally, 

,l/"'~ " i i r f l  n . 
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2. The generalisation 

For an infinite dimensional Banach space X let p ( X )  = sup{p: X has type p} 

and q ( X ) = i n f { q :  X has cotype q}. The results of Maurey and Pisier [5] 

combined with the work of Krivine [4] yield the following important result: For 

every X, lp~x) and lq~x) are finitely representable in X. 

On the other hand, it has been observed by Figiel [2] that if lp has a subspace 

without A P  and lp is finitely representable in X then X has a subspace without AP. 

(This can be also easily seen from our construction, actually we have used there 

only the fact that Y = Z , ~ ( Z A ~ a . @ I ~ ' ) ~ p  where Z , O  is any direct sum 

decompostion.) 

Although we have not considered the case p > 2, it should be clear that the 

whole construction carries to this case as well, we just have to interchange the 

roles of A, and V,. As said before, the case p > 2 follows anyhow from Entio's 

construction, as shown by Davie, Figiel and Kwapiefi. 

In this way we obtain the result stated in the Abstract: if p ( X )  < 2 or q ( X )  > 2 

then X contains a subspace without AP. 

The limit case p ( X )  = q ( X )  = 2 has been recently settled by W. B. Johnson 

[3]. He  proved that if p, ~ 2 and K, ~ ~ very fast, then every subspace of 

(E@ l~.")~ has AP. 
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