SUBSPACES WITHOUT THE APPROXIMATION PROPERTY

BY

A. SZANKOWSKI

ABSTRACT

It is proved that the Banach space l_p with $1 \le p < 2$ contains a subspace without AP (the case 2 follows from the Enflo's construction and also from the present one). The result generalizes to the following one: if the supremum of types of X is strictly less than 2 or if the infimum of cotypes of X is strictly more than 2 then X contains a subspace without AP.

A Banach space Z has the compact approximation property (CAP) if for every compact $K \subset Z$ and for every $\varepsilon > 0$ there exists a compact operator $T: Z \to Z$ such that $||Tz - z|| < \varepsilon$ for every $z \in K$.

Clearly, CAP is a (formally) weaker property than the Grothendieck's approximation property (it is, however, not known if the two properties are different).

The following criterion for a Banach space not to have CAP is a modification of Enflo's original one [1].

Throughout this paper we shall denote $I_n = \{2^n + 1, 2^n + 2, \dots, 2^{n+1}\}$.

PROPOSITION. A Banach space Z does not have CAP if there exist bounded sequences $z_n^* \in Z^*$, $z_n \in Z$ and finite subsets $F_n \subset Z$, $n = 1, 2, \cdots$ so that

 $0^{\circ} \quad z_n^* z_n = 1 \text{ for all } n,$

- $1^{\circ} \quad z_{n}^{*} \xrightarrow{w} 0,$
- 2° for every $T: Z \rightarrow Z$,

$$\left|2^{-n}\sum_{i\in I_n}z_i^*Tz_i-2^{-n-1}\sum_{i\in I_{n+1}}z_i^*Tz_i\right| \leq \max\{||Tf||: f\in F_n\},\$$

 $3^{\circ} \quad \sum_{n=1}^{\infty} \max\{\|f\|: f \in F_n\} < \infty.$

Received July 20, 1977

PROOF. We put $\beta_n(T) = 2^{-n} \sum_{i \in I_n} z_i^* T z_i$ and $\alpha_n = \max\{||f||: f \in F_n\}$. By 2° and 3°, $|\beta_n(T) - \beta_{n+1}(T)| \leq ||T|| \alpha_n$ and therefore $\beta_n(T)$ is convergent if T is bounded. We put $\beta(T) = \lim \beta_n(T)$ for $T \in L(Z, Z)$ (= bounded linear operators). By 0°, $\beta(I) = 1$ where I is the identity on Z. Next we shall notice that β annihilates the compact operators: if T is compact, then the set $(Tz_i)_{i=1}^{\infty}$ is compact, therefore, since $z_n^* \xrightarrow{w} 0$ and z_n^* is bounded, $\lim_n \sup_i |z_n^* T z_i| = 0$, in particular $z_n^* T z_n \to 0$ and $\beta_n(T) \to 0$.

Pick now ξ_n , $n = 1, 2, \cdots$ so that $\xi_n \to \infty$ but $\sum \alpha_n \xi_n < \infty$. Let us take

$$K = \bigcup_{n=1}^{\infty} (\xi_n \alpha_n)^{-1} F_n \cup \{0\}.$$

K is just a sequence tending to 0 and is therefore compact.

We have, by 2° and 3°, for $T \in L(Z, Z)$,

$$\beta(T) \leq \left(\sum \alpha_n \xi_n\right) \sup\{\|f\|: f \in K\},\$$

Assume now that T is compact and that $||Tx - x|| < \varepsilon$ for all $x \in K$. By linearity of β ,

$$1=|\beta(I-T)|\leq \left(\sum \alpha_n\xi_n\right)\cdot\varepsilon$$

which forces ε to be bounded away from 0.

1. A subspace of l_p , $1 \le p < 2$, without AP

Let Δ_n be a (disjoint) partition of I_n , to be defined later on.

Let $Y = (\sum_{n} \sum_{A \in \Delta_{n}} \bigoplus l_{2}^{A})_{l_{p}}$, i.e. Y is the space of all sequences $t = (t_{i})_{i=1}^{\infty}$ such that

$$||t|| = \left(\sum_{n=1}^{\infty} \sum_{A \in \Delta_n} \left(\sum_{i \in A} t_i^2\right)^{p/2}\right)^{1/p} < \infty,$$

equipped with the norm || ||.

Clearly, Y is isomorphic to a subspace of l_p , $1 \le p \le \infty$ (Y is even isomorphic to l_p for $1). Let <math>(e_i)$ be the unit vector basis of Y (i.e. $e_i = (\delta_{ij})_{j=1}^{\infty}$) and let (e_i^*) be the biorthonormal functionals of e_i ; we have

$$\left\|\sum t_i e_i^*\right\|_{Y^*} = \left(\sum_{n=1}^{\infty} \sum_{A \in \Delta_n} \left(\sum t_i^2\right)^{q/2}\right)^{1/q} \qquad \left(\frac{1}{q} + \frac{1}{p} = 1\right).$$

Now define $z_i = e_{2i} - e_{2i+1} + e_{4i} + e_{4i+1} + e_{4i+2} + e_{4i+3}$ and $Z = \overline{\text{span}}[z_i]_{i=1}^{\infty} \subset Y$. We will prove that for a suitable choice of the partitions Δ_n , Z fails to have CAP.

Notice that $(e_{2i}^* - e_{2i+1}^*)|_{Z} = \frac{1}{2}(e_{4i}^* + \cdots + e_{4i+3}^*)|_{Z}$ because both sides give 2 when evaluated on z_i and give 0 when evaluated on z_j , $j \neq i$. We define $z_i^* \in Z^*$ by

$$z_{i}^{*} = \frac{1}{2}(e_{2i}^{*} - e_{2i+1}^{*})|_{Z} (= \frac{1}{4}(e_{4i}^{*} + \cdots + e_{4i+3}^{*})|_{Z}).$$

We put for $T \in L(Z, Z)$,

$$\beta_n(T) = 2^{-n} \sum_{i \in I_n} z^*_i T z_i.$$

We have

$$\beta_{n+1}(T) - \beta_n(T) = 2^{-n-2} \sum_{j \in I_n} (e_{2j}^* - e_{2j+1}^*) T(e_{2j} - e_{2j+1} + e_{4j} + \dots + e_{4j+3})$$
$$- 2^{-n-2} \sum_{i \in I_{n-1}} (e_{4i}^* + \dots + e_{4i+3}^*) T(e_{2i} - e_{2i+1} + e_{4i} + \dots + e_{4i+3})$$

which is equal to

$$2^{-n-2} \sum_{i \in I_{n-1}} \{ e_{4i}^* T(e_{4i} - e_{4i+1} + e_{8i} + \dots + e_{8i+3} - e_{2i} + e_{2i+1} - e_{4i} - \dots - e_{4i+3}) \\ + e_{4i+1}^* T(-e_{4i} + e_{4i+1} - e_{8i} - \dots - e_{8i+3} - e_{2i} + e_{2i+1} - e_{4i} - \dots - e_{4i+3}) \\ + e_{4i+2}^* T(e_{4i+2} - e_{4i+3} + e_{8i+4} + \dots + e_{8i+7} - e_{2i} + e_{2i+1} - e_{4i} - \dots - e_{4i+3}) \\ + e_{4i+3}^* T(-e_{4i+2} + e_{4i+3} - e_{8i+4} - \dots - e_{8i+7} - e_{2i} + e_{2i+1} - e_{4i} - \dots - e_{4i+3}) \}.$$

The elements in parentheses above will be called y_{4i} , y_{4i+1} , y_{4i+2} , y_{4i+3} respectively, thus

$$\beta_{n+1}(T) - \beta_n(T) = 2^{-n-2} \sum_{i \in I_{n+1}} e^* T y_i.$$

Now we use a trick which has been already used in [6]. Let ∇_n be a partition of I_n (∇_n will be in a sense "orthogonal" to Δ_n). We assume, for the sake of convenience, that the elements of ∇_n have equal number of elements, say m_n . Thus $\# \nabla_n = 2^n m_n^{-1}$.

We can write

$$\beta_n(T) - \beta_{n-1}(T) = 2^{-n-1} \sum_{i \in I_n} e^*_i T y_i = 2^{-n-1} \sum_{B \in \nabla_n} \sum_{i \in B} e^*_i T y_i$$
$$= 2^{-n-1} \sum_{B \in \nabla_n} 2^{-m_n} \sum_{\varepsilon} \left(\sum_{i \in B} \varepsilon_i e^*_i \right) \left(\sum_{i \in B} \varepsilon_i T y_i \right)$$

where Σ_{ε} means: summation with respect to all $\varepsilon_i = \pm 1$, $i \in B$. Since $\Sigma \varepsilon_i T y_i = T \Sigma \varepsilon_i y_i$, we get

(1)

$$\begin{aligned} & |\beta_n(T) - \beta_{n-1}(T)| \\ & \leq 2^{-n-1} (\# \nabla_n) \max\left\{ \left\| \sum_{i \in B} \varepsilon_i e^*_i \right\| \left\| T \sum_{i \in B} \varepsilon_i y_i \right\| : \varepsilon_i = \pm 1, B \in \nabla_n \right\}. \end{aligned}$$

In the last part of the proof we shall find partitions Δ_n , ∇_n so that for every $B \in \nabla_n$ and every choice of $\varepsilon_i = \pm 1$ and all *n* we have

(2)
$$\left\|\sum_{i\in B}\varepsilon_i e^*_i\right\| = m_n^{1/q}, \quad \text{where } \frac{1}{p} + \frac{1}{q} = 1,$$

(3)
$$\left\|\sum_{i\in B}\varepsilon_{i}y_{i}\right\|\leq 10m_{n}^{1/2},$$

$$(4) m_n \leq 2^{n/100}$$

Let us first notice that this implies that Z fails to have CAP:

Take $F_n = \{m_n^{1/q-1} \sum_{i \in B} \varepsilon_i y_i : \varepsilon_i = \pm 1, B \in \nabla_n\}$; by (1) and (2),

 $|\beta_n(T) - \beta_{n-1}(T)| \leq \frac{1}{4} \max\{||Tf||: f \in F_n\}$

and, by (3) and (4),

$$\alpha_n = \max\{||f||: f \in F_n\} \le 10m_n^{1/q-1+1/2} \le C2^{Kn}$$

for some K < 0. Therefore the assumptions of the Proposition are satisfied.

We proceed now to construct the partitions Δ_n and ∇_n .

We denote $I'_n = \{i \in I_n : i \equiv r \pmod{4}\}$ for r = 0, 1, 2, 3. The formula $\varphi'_n(i) = i + r$ defines a map $\varphi'_n : I'_n \to I'_n$, r = 0, 1, 2, 3. For $\alpha = 0, 1$ we define maps $\psi_{n,\alpha} : I^o_n \to I^o_{n+1}$ by formulas

$$\psi_{n,\alpha}(i)=2i+4\alpha.$$

All the above maps are 1-1 and have disjoint ranges.

We can represent I_n° as $I_n^\circ = E_n \times F_n$ so that

(5)
$$\# E_n \ge 2^{n/2-10}, \quad \# F_n \ge 2^{n/2-10}$$

and so that the following recurrence relations are satisfied for $\alpha = 0, 1$:

 $\forall f \in F_n \exists e \in E_{n+1} \text{ so that } \psi_{n,\alpha}(E_n \times \{f\}) \subset \{e\} \times F_{n+1}$

(6)

$$\forall f \in F_n \exists e \in E_{n-1} \text{ so that } E_n \times \{f\} \subset \bigcup_{\alpha=0}^{1} \psi_{n-1,\alpha}(\{e\} \times F_{n-1})$$

(we can do it by an easy induction: on the n + 1st step we take either

$$E_{n+1} = \bigcup_{\alpha=0}^{1} \psi_{n,\alpha}(F_n) \text{ and } F_{n+1} = \psi_{n,0}(E_n) \text{ or } E_{n+1} = \psi_{n,0}(E_n) \text{ and}$$

 $F_{n+1} = \bigcup_{\alpha=0}^{n} \psi_{n,\alpha}(E_n)$, making the choice so that (5) is still fulfilled).

Finally, we split each E_n , quite independently of what has been done until now, as

$$E_n = \prod_{r=0}^{3} E_n^r$$
 i.e. $E_n = E_n^0 \times E_n^1 \times E_n^2 \times E_n^3$

demanding just that $\# E'_n \ge 2^{n/8-10}$ for r = 0, 1, 2, 3.

We set now[†]

$$\nabla_n = \left\{ \varphi'_n(E'_n \times \{f\}) : f \in \prod_{s \neq r} E^s_n \times F_n ; r = 0, 1, 2, 3 \right\}$$

and

$$\Delta_n = \left\{ \varphi_n^r \left(\{ e \} \times \prod_{s \neq r} E_n^s \times F_n \right) : e \in E_n^r; \ r = 0, 1, 2, 3 \right\} .$$

The condition (4) is obviously satisfied (for big n), to prove (2) and (3) let

$$B \in \nabla_n$$
, $B = \varphi'_n(E'_n \times \{f\})$ with $f = \prod_{s \neq r} f_s \times f'$, $f' \in F_n$.

(2) is almost immediate. We claim that for every $A \in \Delta_n$, $\# A \cap B \leq 1$. Indeed, let

$$A = \varphi_n^t \left(\{e\} \times \prod_{s \neq t} E_n^s \times F_n \right).$$

If $t \neq r$, then $A \cap B = \emptyset$. Otherwise $A \cap B = \{\varphi_n^r (e \times f)\}$. Now we have

$$\left\|\sum_{i\in B}\varepsilon_{i}e_{i}^{*}\right\|_{Y^{*}} = \left(\sum_{A\in\Delta_{n}}(\#A\cap B)^{q}\right)^{1/q} = (\#\{A\in\Delta_{n}\colon A\cap B\neq\emptyset\})^{1/q}$$
$$= (\#B)^{1/q} = m_{n}^{1/q}.$$

The proof of (3) is a bit more involved. A look at the formula for y_i convinces us that for every ε_i

⁺ We use the convention $A \times B = B \times A$.

A. SZANKOWSKI

(7)

$$\sum_{i \in B} \varepsilon_i y_i = -\sum_{s \neq r} a_s \sum_{i \in \varphi_n^* [E_n^r \times \{f\}]} \varepsilon_i e_i + (-1) \sum_{s=0}^3 \sum_{i \in \varphi_{n+1}^* \psi_{n,n}} \varepsilon_i e_i \\ -\sum_{i \in \varphi_{n-1}^B \psi_n^{-1} 1, \gamma [E_n^r \times \{f\}]} \varepsilon_i e_i + \sum_{i \in \varphi_{n-1}^{B+1} \psi_{n-1}^{-1} 1, \gamma [E_n^r \times \{f\}]} \varepsilon_i e_i;$$

here a_n are respectively 1 or 2, α , β , γ are 0, 1 or 2. The point is now that, by (6), all the index sets above are contained in some elements of Δ_{n-1} , Δ_n , Δ_{n+1} , respectively. The following is a formal proof:

1° for $s \neq r$, $E'_n \times \{f\} = f_s \times \prod_{t \neq s, t \neq r} f_t \times f' \subset f_s \times \prod_{t \neq s} E'_n \times F_n$ and therefore

$$\varphi_n^s(E_n^{\prime}\times\{f\})\subset \varphi_n^s\Big(\{f_s\}\times\prod_{i\neq s}E_n^i\times F_n\Big)\in\Delta_n.$$

2° by (6), $\varphi_{n+1}^s \psi_{n,\alpha}(E_n \times \{f\}) \subset \varphi_{n+1}^s \psi_{n,\alpha}(E_n \times \{f\}) \subset \varphi_{n+1}^s(\{e\} \times F_{n+1})$ for some $e = \prod_{s=0}^3 e_s$ with $e_s \in E_{n+1}^s$. Therefore

$$\varphi_{n+1}^{s}(\{e\} \times F_{n+1}) \subset \varphi_{n+1}^{s}(\{e_s\} \times \prod_{t \neq s} E_{n+1}^{t} \times F_{n}) \in \Delta_{n+1} \quad \text{for } s = 0, 1, 2, 3.$$

3° by (6), $\varphi_{n-1}^{\beta}\psi_{n-1,\gamma}^{-1}(E_n^r \times \{f\}) \subset \varphi_{n-1}^{\beta}\psi_{n-1,\gamma}^{-1}(E_n \times \{f\}) \subset \varphi_{n-1}^{\beta}(\{e\} \times F_{n-1})$ for some $e = \prod_{s=0}^{3} e_s$ with $e_s \in E_{n-1}^s$. Therefore

$$\varphi_{n-1}^{\beta}(\{e\}\times F_{n-1})\subset \varphi_{n-1}^{\beta}\left(\{e_{\beta}\}\times \prod_{s\neq\beta}E_{n-1}^{s}\times F_{n-1}\right)\in \Delta_{n-1}.$$

This tedious argument shows that we can rewrite (7) as

$$\sum_{i\in B}\varepsilon_i y_i = \sum_{j=1}^{10} \pm \sum_{i\in A_j}\varepsilon_i e_i$$

where A_1, \dots, A_{10} are subsets of some elements of $\Delta_{n-1}, \Delta_n, \Delta_{n+1}$, respectively and, in fact, $\# A_j = \# B$ for $j = 1, \dots, 10$ (the number 10 arises since $\sum_{s \neq r} a_s = 2 + 1 + 1 = 4$, $\sum_{s=0}^{3}$ gives 4 more elements and two last components give each 1). Therefore

$$\left\|\sum_{i\in A_{j}}\varepsilon_{i}e_{i}\right\| = (\#A_{j})^{1/2} = (\#B)^{1/2} = m_{n}^{1/2}$$

and, finally,

$$\sum_{i} y_i \leq 10 m_n^{1/2}.$$

2. The generalisation

For an infinite dimensional Banach space X let $p(X) = \sup\{p: X \text{ has type } p\}$ and $q(X) = \inf\{q: X \text{ has cotype } q\}$. The results of Maurey and Pisier [5] combined with the work of Krivine [4] yield the following important result: For every X, $l_{p(X)}$ and $l_{q(X)}$ are finitely representable in X.

On the other hand, it has been observed by Figiel [2] that if l_p has a subspace without AP and l_p is finitely representable in X then X has a subspace without AP. (This can be also easily seen from our construction, actually we have used there only the fact that $Y = \sum_n \bigoplus (\sum_{A \in \Delta_n} \bigoplus l_2^A)_{l_p}$ where $\sum_n \bigoplus$ is any direct sum decomposition.)

Although we have not considered the case p > 2, it should be clear that the whole construction carries to this case as well, we just have to interchange the roles of Δ_n and ∇_n . As said before, the case p > 2 follows anyhow from Enflo's construction, as shown by Davie, Figiel and Kwapień.

In this way we obtain the result stated in the Abstract: if p(X) < 2 or q(X) > 2then X contains a subspace without AP.

The limit case p(X) = q(X) = 2 has been recently settled by W. B. Johnson [3]. He proved that if $p_n \to 2$ and $K_n \to \infty$ very fast, then every subspace of $(\Sigma \bigoplus l_{p_n}^{K_n})_{l_2}$ has AP.

REFERENCES

1. P. Enflo, A counterexample to the approximation problem in Banach spaces, Acta Math. 130 (1973), 309-317.

2. T. Figiel, Factorisation of compact operators and applications to the approximation problem, Studia Math. 45 (1973), 191-210.

3. W. B. Johnson, to appear.

4. J. L. Krivine, Finite dimensional subspaces of Banach lattices, Ann. Math. 104 (1976), 1-29 (French).

5. B. Maurey and G. Pisier, Series of independent, vector valued random variables and geometric properties of Banach spaces, Studia Math. 58 (1976), 45-90 (French).

6. A. Szankowski, A Banach lattice without the approximation property, Israel J. Math. 24 (1976), 329-337.

INSTITUTE FOR ADVANCED STUDIES,

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL

AND

UNIVERSITY OF COPENHAGEN